Детская энциклопедия

Меню сайта











Решение задачи о взвешивании

Итак, нам нужно решить в целых числах уравнение (2). Определяем неизвестное х:

 

 

Им-то мы и воспользуемся. Ведь наша цель — уменьшить коэффициент при неизвестном. Вве­дем обозначение:

 

 

Задача сведена к ре­шению в целых числах уравнения 3x1-y=1. Решая это уравнение, получим y=3х1-1, где х1 — любое целое число.

А тогда

х=9-2•(3x1-1)+x1= 11-5х1. Таким образом, общее решение уравнения (2) можно записать так:

 
 
 

Найдем несколько решений этого уравнения:

 

 

 

Уравнение (2) имеет бесконечное множество решений, но мы сможем воспользоваться толь­ко некоторыми. Это зависит от числа гирь в нашем распоряжении, да и размеров чаш.

Мы рассмотрели два уравнения первой сте­пени. Каждое из них, как удалось установить, имеет целочисленные решения. Однако наряду с ними можно указать уравнения, которые решений в целых числах не имеют.

 

 

Таково, например, уравнение

 

В самом деле, допустив, что при некоторых целых х и у равенство (11) верно, мы получим, что 5 делится на 3.

Какие неопределенные уравнения разреши­мы в целых числах?

Можно ли для всякого разрешимого в це­лых числах неопределенного уравнения первой степени найти его решение методом рассеивания?

На первый вопрос отвечает теорема:

Уравнение с целыми коэффициентами а1,

а2, ...,аn, b:

а1х1 + а2x2+...+аnxn=b (12)

разрешимо в целых числах только в том случае, если свободный член b делится на наибольший общий делитель чисел а1, а2, ..., аn.

Ответим на другой вопрос: всегда ли пред­ложенный метод решения в целых числах неопределенных уравнений первой степени приво­дит к цели?

Если а1— наименьший по абсолютной вели­чине коэффициент при неизвестном в уравнении (12), то мы заменяем это уравнение другим, в котором все коэффициенты, кроме коэффициента a1, заменены остатками от деления этих чи­сел на а1. Если хотя бы один из коэффициен­тов а2, а3, ..., аn не делится на а1, то полу­чим уравнение, коэффициенты которого по аб­солютной величине меньше, чем у данного. С этим уравнением поступаем так же, как сдан­ным. Если все числа а2, а3, ..., аn делятся на a1 а b не делится, то данное уравнение нераз­решимо. Если все числа a2, а3, ..., аn и b делят­ся на а1, то, деля обе части уравнения на а1, получим уравнение, целые решения которого находятся без труда.

Из этого рассуждения следует, что описан­ный метод позволяет найти целые решения вся­кого разрешимого в целых числах неопределен­ного уравнения с целыми коэффициентами.





 
Календарь
«  Декабрь 2016  »
ПнВтСрЧтПтСбВс
   1234
567891011
12131415161718
19202122232425
262728293031

Новые статьи
Каталог статей
Как подготовить ребенка к школе
Освоение навыков чтения
Природные материалы на уроках труда

Статистика




 
Адрес почты Вопросы по рекомендациям, размещению рекламы и обратных ссылок обращайтесь pochta@enciklopediya1.ru
2013 © 2016