Детская энциклопедия

Меню сайта











Возникновение геометрии как науки

Примерно такой же характер имели геомет­рические знания и в древней Греции в VII—VI вв. до н. э. Греческая культура была более молодой, и поэтому многие научные сведения греки заимствовали у египтян и вавилонян. Именно здесь, в Греции, в VI в. до н. э. и про­изошло коренное преобразование способа из­учения геометрии, здесь и возникла она как наука.

Это было время установления демократии в большинстве греческих городов-государств, вре­мя бурного развития общественно-политической жизни Греции и появления научно-фило­софских школ. В этих школах ученые впервые в истории человечества пытались понять и объ­яснить устройство мира с естественнонаучной и философской точек зрения. До этого в стра­нах Древнего Востока господствовали догматы религии, в которые надо было верить, обсуж­дать их было нельзя. В Греции же каждая из школ старалась доказать правильность своей теории и опровергнуть противников, показав, что их доводы логически противоречивы. Логиче­ские рассуждения получили в это время ши­рокое применение не только в естественных науках и философии, но и в судах, и в народных собраниях.

Особенно большую роль сыграли логические рассуждения в геометрии — они-то и сделали из собрания геометрических фактов стройную науку. Сами греки связывали рождение геомет­рии с деятельностью Пифагора и его школы. О Пифагоре у нас нет почти никаких достоверных сведений; уже в древности его имя было окру­жено самыми фантастическими легендами. Известно только, что Пифагор переселился около середины VI в. до н. э. с острова Самос в Южную Италию (так называемую Великую Грецию), где находились богатые греческие города-коло­нии, и основал там союз, имевший и политиче­ские и научные цели. Мы знаем выдающихся математиков V в. до н. э., которые называли себя пифагорейцами, Поэтому у нас есть все основания говорить о пифагорейской математи­ческой школе, хотя мы не знаем в точности, какие открытия были сделаны самим Пифагором, а какие принадлежат его последователям.

Что же сделали пифагорейцы в геометрии? Прежде всего они начали строить геометрию как абстрактную науку, изучающую общие свойства неких идеальных фигур, которые «в чистом виде» в природе не встречаются. Так в геометрию были введены линии, имею­щие только длину, но не имеющие ширины; точки, не имеющие ни длины, ни ширины; фигу­ры, составленные из таких линий, и т. д. Эти новые геометрические объекты являются от­влечениями, абстракциями от формы реальных физических тел. Например, прямая линия могла возникнуть как абстракция от формы туго на­тянутой веревки, струны, луча света и т. п. Но ясно, что мы никогда не сможем построить от­резок идеальной прямой: как бы точно мы его ни вычертили тушью или мелом, стоит только посмотреть на рисунок в сильную лупу, чтобы убедиться, что это вовсе не отрезок прямой, а неровная палочка из туши или мела.

Создание отвлеченных геометрических поня­тий было вовсе не легким делом. Далеко не все мыслители древности понимали их пользу. Так, например, софист Протагор не признавал геометрических абстракций. Он говорил, что никто не видел линий без ширины, не видел, чтобы круг касался линейки только в одной точке — касание всегда будет происходить по маленькому отрезочку, поэтому таких вещей и не существует.

Однако новая точка зрения на геометрию позволила в очень короткий срок добиться та­ких удивительных результатов, что большин­ство ученых признали эти абстракции и нача­ли с ними оперировать. Как же они это делали? Как вообще можно изучать свойства тех идеаль­ных фигур, с которыми имеет дело геометрия? Величайшим достижением древних греков было то, что они создали метод для изучения геометрических абстракций, введя в математи­ку логические доказательства.

Рассмотрим, например, как можно установить, что сумма углов треугольника точно равна 2d.

Непосредственным измерением это сделать нельзя, во-первых, потому, что на практике мы никогда не имеем дела с идеальными треуголь­никами, и, во-вторых, потому, что измерение углов на практике всегда производится с определенной степенью точности, например с точностью до 1' или 1".

Но если бы даже мы и могли измерять иде­альные треугольники (с помощью идеальных инструментов!), то и тогда мы не могли бы уста­новить теорему о сумме углов любого треугольника, потому что различных треугольников бесконеч­но много, невозможно перебрать их все! Но все сказанное можно дословно повторить и о любой другой теореме: она относится не к одной определенной геометрической фигуре (на­пример, к треугольнику со сторонами 3, 4, 5), а к целому классу фигур (например, ко всем треугольникам, или ко всем прямоугольным треугольникам, или ко всем равнобедренным треугольникам), причем каждый такой класс состоит из бесконечного множества отдель­ных фигур.

Древнегреческие ученые понимали, что уста­новить правильность какого-нибудь свойства для всех фигур некоторого класса можно толь­ко с помощью логического доказательства. Но как построить такую систему геометрии, в ко­торой все правильные предложения можно бы­ло бы доказать? И можно ли построить такую систему?





 
Календарь
«  Декабрь 2016  »
ПнВтСрЧтПтСбВс
   1234
567891011
12131415161718
19202122232425
262728293031

Новые статьи
Каталог статей
Как подготовить ребенка к школе
Освоение навыков чтения
Природные материалы на уроках труда

Статистика




 
Адрес почты Вопросы по рекомендациям, размещению рекламы и обратных ссылок обращайтесь pochta@enciklopediya1.ru
2013 © 2016