Детская энциклопедия

Меню сайта











Два способа задания множества. Множества и высказывания

Поставим теперь вопрос о том, каким обра­зом можно задать то или иное множество. Проще всего это сделать, перечислив все элементы, в совокупности составляющие данное множе­ство: так, можно сказать, что фигурирующее выше множество А состоит из школьников Пети, Саши, Кати, Веры и Наташи. Однако в тех случаях, когда множество содержит много эле­ментов, этот явный, или перечислительный, способ задания множества может оказать­ся очень неудобным. Кроме того, при таком за­дании множества обычно оказывается зама­скированным самый принцип его образования, то общее, что служит причиной объединения отобранных элементов в одно множество.

Второй способ задания множества состоит в том, что мы указываем признак, харак­теризующий все элементы множества, и только эти элементы. Так, выше мы говорили: «множе­ство отличников» или «множество уча­щихся, сидящих в классе в пер­вом ряду». Такой способ задания множе­ства называется неявным или описатель­ным. Этот способ заключается в том, что мы фор­мулируем некоторое высказывание, касающееся элементов рассматриваемого уни­версального множества I («быть отлични­ком» или «сидеть в первом ряду»); далее отби­раем те, и только те, элементы множества I, которые этому высказыванию удовлетворяют.

Описательный способ задания множества связывает учение о множествах с учением о высказываниях, составляющим предмет математической логики. Высказы­ванием мы называем всякое утверждение, которое может оказаться истинным или лож­ным; при этом предполагается, что в принципе существует возможность установить, истинно данное высказывание или ложно, хотя мы, быть может, этой возможности не имеем. С этой точ­ки зрения утверждение «ровно через 100 лет в этот. день в Москве будет ясная погода» является высказыванием, поскольку через 100 лет можно будет проверить, правда это или нет. Напротив, утверждение «неделя это большой промежуток времени» высказыва­нием не является в силу неопределенности выражения «большой промежуток времени», которое у разных лиц и в различных обстоя­тельствах может иметь совершенно разный смысл; здесь, не обладая несколькими допол­нительными сведениями, никак нельзя сказать, является это утверждение истинным или нет.

Рассмотрим теперь высказывания, относя­щиеся к элементам определенного универсаль­ного множества I; в случае, когда этим мно­жеством является множество учащихся дан­ного класса, это могут быть высказывания: «он отличник», «он сидит в первом ряду», «он выше 1 м 50 см», «он старше 50 лет», «он — это девочка», «он левша», «он имеет две головы» и т. д. Каждому такому высказыванию отве­чает некоторое множество элементов из I, для которых это высказывание является истинным; это множество называется множеством истинности данного высказывания. Мно­жество истинности может оказаться пустым; в этом случае высказывание называется тож­дественно ложным или проти­воречивым. Так, для множества учеников данного класса тождественно ложными будут высказывания «он имеет две головы» или «ему больше 50 лет»; выше у нас фигурировало еще одно высказывание, также заведомо противо­речивое в применении к ученикам какого-либо класса: «он слон». В определенном смысле противоположный случай — это тот, когда мно­жество истинности данного высказывания сов­падает со всем универсальным множеством I; в этом случае высказывание называется тож­дественно истинным или бес­содержательным. Тождественно истин­ными являются, например, высказывания: «он (ученик определенного класса) моложе 50 лет», «он мальчик или девочка».





 
Календарь
«  Декабрь 2016  »
ПнВтСрЧтПтСбВс
   1234
567891011
12131415161718
19202122232425
262728293031

Новые статьи
Каталог статей
Как подготовить ребенка к школе
Освоение навыков чтения
Природные материалы на уроках труда

Статистика




 
Адрес почты Вопросы по рекомендациям, размещению рекламы и обратных ссылок обращайтесь pochta@enciklopediya1.ru
2013 © 2016